<u>Q 1:</u> Determine wheather each of the following statements is true or false: (10 points)

1) The recursive definition of the set $S = \{1,5,9,13,17, ...\}$ is $1 \in S$; $x \in S \rightarrow x + 4 \in S$.T

2) P(n, 0) = 0. **F**

- 3) $\sum_{k=0}^{n} (-1)^{K} {n \choose k} = -1$ **F**
- 4) The recurrence relation $a_{n=a_{n-1}+a_{n-2}^2}$ is linear. F

5) The recurrence relation $a_n = 3a_{n-1} + 4a_{n-2} + 5a_{n-3}$ is of degree 3. T

6) The subsets $\{-3, -2, -1, 0\}$ and $\{0, 1, 2, 3\}$ are partitions of the set $\{-3, -2, -1, 0, 1, 2, 3\}$. **F**

7) x^2 is O(x^3). T

8) An undirected graph has an even number of vertices of odd degree.(T)

9-~
$$(\exists x(x^2 > 4)) = \forall x(x^2 < 4)$$
.
10- {x} ⊂ {x, {x}} . T

<u>Q 2:</u> Choose the correct answer: (15 points)

1-The minimum number of students required in a class to be sure that at least 10 will receive the same grade if there are 6 possible grades is:

a)60 b) 10⁶ c) 6¹⁰ d) 55
2-

$$2 - \sum_{k=0}^{10} {10 \choose k} =:$$

a)10 b) 1 c) 1024 d) 0

3- the number of 1-1 functions from a set with 4 elements to a set with 7 elements is:

a) 840 b) 11 c)28 d) 3

4- the solution of the recurrence relation $(a_n = 3a_{n-1})$ with $a_0 = 2$ is:

a)2. 3^n b) 2^n c) 3^{n+1} d) 3^n

5- Relations **R** are defined on the set $\{1,2,3,4\}$. Then, one of the following is false :

a) {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4)} is reflexive, symmetric, antisymmetric and transitive.

b) {(2, 4), (4, 2)} is symmetric only.

c) $\{(1, 1), (2, 2), (3, 3), (4, 4)\}$ is reflexive, symmetric, antisymmetric and transitive.

d) $\{(1, 3), (1, 4), (2, 3), (2, 4), (3, 1), (3, 4)\}$ is not reflexive, not symmetric, not anti-symmetric and not transitive.

6- The relation R represented by the directed graph is shown belo

Then which of the following is true.

a) R is reflexive and symmetric.

b) R is symmetric and transitive.

c) R is symmetric and anti-symmetric.

d) R is anti-symmetric and transitive.

7- The number of relations are there on a set with n elements: $\frac{1}{2}$

a) n! b) 2^{n^2} c) 2^n d) 2n.

8- The number of edges of K_4 is:

A)10 B)4 C)6 D)8

9- If
$$f(x) = x^2 + x - 3$$
, then $f^{-1}(9) =$:
a){3}
b) $\{-4\}$ c){3, -4}d){-3,4}

10- If |A| = 3, $|A \cap B| = 2$, $|A \cup B| = 10$, then |B| =:

a)60	b)15	c)9	d) 5
/	/		/

11- one of the following pairs are relatively prime:

a) 6,18 **b)5,17** c)24,18 d) 77,11

12- if 54 div d=10, 54 mod d=4, then d=:

13- let $f : \mathbb{R} \to \mathbb{R}$, then one of the following is not invertible:

a) f(x)=2x-3 b)f(x)=x+5 c) $f(x)=x^{3}$ d) $f(x)=x^{2}$.

14- the multiplicative inverse of 3 in \mathbb{Z}_8 is:

15) the number of positive integers not exceeding 100 and divisible by 8 is:

Q 3: Solve the following questions: (25 points)

1- Use mathematical induction to show that

$$1 + 2^1 + 2^2 + \dots + 2^n = 2^{n+1} - 1$$

Solution: P(0) is true because $2^0 = 1 = 2^1 - 1$ For the inductive hypothesis, we assume that P(k) is true for an arbitrary non negative integer k s.t.

$$1 + 2^{1} + 2^{2} + \dots + 2^{k} = 2^{k+1} - 1$$

Taking

$$1 + 2^{1} + 2^{2} + \dots + 2^{k} + 2^{k+1}$$

= $(2^{k+1} - 1) + 2^{k+1}$
= $2^{k+2} - 1$

Thus P(k + 1) is also true.

Hence P(n) is true for all non-negative integers n.

2- From a group of 7 men, 3 men are to be selected to form a committee. In how many ways can it be done.

Sol: $\binom{7}{3}$

3- Write the expansion of $(2x - y)^4$.

Sol: Binomial theorem

4- Solve recurrence relation together with the initial condition given $a_n = 2a_{n-1}$ for ≥ 1 , $a_0 = 3$?

 $a_n = 3.2^n$.

4– Let m be an integer with m > 1. Show that the congruence modulo m relation

 $\mathbf{R} = \{(a, b) \mid a \equiv b \pmod{m}\}$ is an equivalence relation on the set of integers.

Ans) Reflexive: $a \equiv a \pmod{m}$ is true because $m \mid (a-a)$. i.e. $(a, a) \in \mathbf{R}$. Symmetric: If $(a, b) \in \mathbf{R}$ then $a \equiv b \pmod{m}$, i.e. $m \mid (a-b)$. implies $m \mid (b-a)$

So $b \equiv a \pmod{m}$, hence $(b,a) \in \mathbf{R}$.

Transitive: If (a, b), (b,c) $\in \mathbf{R}$ then $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$, i.e. m |(a-b) and m |(b-c). implies m |[(a-b)+ (b-c)].implies m |(a-c). So $a \equiv c \pmod{m}$, hence $(a,c) \in \mathbf{R}$.

5- What are the degrees and neighborhoods of the vertices in the graph H?

Solution

H:deg(a)=4,deg(b)=deg(e)=6,deg(c)=1,deg(d)=5

 $N(a) = \{ b,d,e \} N(b) = \{ a,b,c,de\}, N(c) = \{ b \}$

 $N(d) = \{a, b, e, \} N(e) = \{a, b, d\}.$