Q 1:Determine wheather each of the following statements is true or false: (10 points)

1) The recursive definition of the set $S=\{1,5,9,13,17, \ldots\}$ is $1 \in$ $S ; x \in S \rightarrow x+4 \in S . T$
2) $P(n, 0)=0 . F$
3) $\sum_{k=0}^{n}(-1)^{K}\binom{n}{k}=-\mathbf{1} \quad F$
4) The recurrence relation $a_{n=a_{n-1}+a^{2}{ }_{n-2}}$ is linear. F
5) The recurrence relation $a_{n}=3 a_{n-1}+4 a_{n-2}+5 a_{n-3}$ is of degree 3 . T
6) The subsets $\{-3,-2,-1,0\}$ and $\{0,1,2,3\}$ are partitions of the set $\{-3,-2,-1,0,1,2,3\} . \mathbf{F}$
7) x^{2} is $O\left(x^{3}\right)$. T
8) An undirected graph has an even number of vertices of odd degree.(T)

9-~ $\left(\exists x\left(x^{2}>4\right)\right)=\forall x\left(x^{2}<4\right) . \mathrm{F}$
10- $\{x\} \subset\{x,\{x\}\}$. T

Q 2: Choose the correct answer: (15 points)

1-The minimum number of students required in a class to be sure that at least 10 will receive the same grade if there are 6 possible grades is:
a) 60
b) 10^{6}
c) 6^{10}
d) 55

2-
$2-\sum_{k=0}^{10}\binom{10}{k}=:$
a) 10
b) 1
c) $\mathbf{1 0 2 4}$
d) 0

3- the number of 1-1 functions from a set with 4 elements to a set with 7 elements is:
a) 840
b) 11
c) 28
d) 3

4- the solution of the recurrence relation $\left(a_{n}=3 a_{n-1}\right)$ with $a_{0}=2$ is:
a) 2.3^{n}
b) 2^{n}
c) 3^{n+1}
d) 3^{n}

5- Relations \mathbf{R} are defined on the set $\{1,2,3,4\}$. Then, one of the following is false :
a) $\{(1,1),(1,2),(2,1),(2,2),(3,3),(4,4)\}$ is reflexive, symmetric, antisymmetric and transitive.
b) $\{(2,4),(4,2)\}$ is symmetric only.
c) $\{(1,1),(2,2),(3,3),(4,4)\}$ is reflexive, symmetric, antisymmetric and transitive.
d) $\{(1,3),(1,4),(2,3),(2,4),(3,1),(3,4)\}$ is not reflexive, not symmetric, not anti-symmetric and not transitive.

6- The relation R represented by the directed graph is shown belo

Then which of the following is true.
a) R is reflexive and symmetric.
b) R is symmetric and transitive.
c) R is symmetric and anti-symmetric.
d) R is anti-symmetric and transitive.

7- The number of relations are there on a set with n elements:
a) n !
b) $2^{n^{2}}$
c) 2^{n}
d) $2 n$.

8- The number of edges of K_{4} is:
A)10
B) 4
C) 6
D) 8

9- If $f(x)=x^{2}+x-3$, then $f^{-1}(9)=:$
a) $\{3\}$
b) $\{-4\}$ c) $\{3,-4\}$
d) $\{-3,4\}$
10- If $|A|=\mathbf{3},|A \cap B|=\mathbf{2},|A \cup B|=\mathbf{1 0}$, then $|B|=$:
a)60
b) 15
c) 9
d) 5

11- one of the following pairs are relatively prime:
a) 6,18
b) 5,17
c) 24,18
d) 77,11

12 - if $54 \mathrm{div} d=10,54 \bmod d=4$, then $d=$:
a) 9
b) 50
c) 5
d) 11

13 - let $\boldsymbol{f}: \mathbb{R} \rightarrow \mathbb{R}$, then one of the following is not invertible:
a) $f(x)=2 x-3$
b) $f(x)=x+5$
c) $f(x)=x^{3}$
d) $f(x)=x^{2}$.

14 - the multiplicative inverse of $\mathbf{3}$ in $\mathbb{Z}_{\mathbf{8}}$ is:
a)4
b) 3
c) 8
d) 5

15) the number of positive integers not exceeding 100 and divisible by 8 is:
a) 13
b) 12
c) 80
d) 92

Q 3: Solve the following questions: (25 points)

1- Use mathematical induction to show that

$$
1+2^{1}+2^{2}+\cdots+2^{n}=2^{n+1}-1
$$

Solution: $P(0)$ is true because $2^{0}=1=2^{1}-1$
For the inductive hypothesis, we assume that $P(k)$ is true for an arbitrary non negative integer k
s.t.

$$
1+2^{1}+2^{2}+\cdots+2^{k}=2^{k+1}-1
$$

Taking

$$
\begin{gathered}
1+2^{1}+2^{2}+\cdots+2^{k}+2^{k+1} \\
=\left(2^{k+1}-1\right)+2^{k+1} \\
=2^{k+2}-1
\end{gathered}
$$

Thus $P(k+1)$ is also true.

Hence $P(n)$ is true for all non-negative integers n.
2- From a group of 7 men, 3 men are to be selected to form a committee. In how many ways can it be done.

Sol: $\binom{7}{3}$
3- Write the expansion of $(2 x-y)^{4}$.

Sol: Binomial theorem

4- Solve recurrence relation together with the initial condition given $a_{n}=2 a_{n-1}$ for $\geq 1, a_{0}=3$?

$$
a_{n}=3.2^{n}
$$

4- Let m be an integer with $m>1$. Show that the congruence modulo m relation $\mathbf{R}=\{(\mathrm{a}, \mathrm{b}) \mid \mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})\}$ is an equivalence relation on the set of integers.
Ans) Reflexive: $a \equiv a(\bmod m)$ is true because $m \mid(a-a)$. i.e. $(a, a) \in \mathbf{R}$. Symmetric: If $(a, b) \in \mathbf{R}$ then $a \equiv b(\bmod m)$, i.e. $m \mid(a-b)$. implies $m \mid(b-$
a)

So $b \equiv a(\bmod m)$, hence $(b, a) \in \mathbf{R}$.
Transitive: If $(a, b),(b, c) \in \mathbf{R}$ then $a \equiv b(\bmod m)$ and $b \equiv c(\bmod m)$, i.e. $\mathrm{m} \mid(\mathrm{a}-\mathrm{b})$ and $\mathrm{m} \mid(\mathrm{b}-\mathrm{c})$. implies $\mathrm{m} \mid[(\mathrm{a}-\mathrm{b})+(\mathrm{b}-\mathrm{c})]$.implies $\mathrm{m} \mid(\mathrm{a}-\mathrm{c})$.
So $a \equiv c(\bmod m)$, hence $(a, c) \in \mathbf{R}$.
5- What are the degrees and neighborhoods of the vertices in the graph H ?

Solution
$\mathrm{H}: \operatorname{deg}(\mathrm{a})=4, \operatorname{deg}(\mathrm{~b})=\operatorname{deg}(\mathrm{e})=6, \operatorname{deg}(\mathrm{c})=1, \operatorname{deg}(\mathrm{~d})=5$
$N(a)=\{b, d, e\} \quad N(b)=\{a, b, c, d e\}, N(c)=\{b\}$
$\mathrm{N}(\mathrm{d})=\{\mathrm{a}, \mathrm{b}, \mathrm{e}\} ,\mathrm{N}(\mathrm{e})=\{\mathrm{a}, \mathrm{b}, \mathrm{d}\}$.

